PRIMITIVE RADON PARTITIONS FOR CYCLIC POLYTOPES

BY

MARILYN BREEN

ABSTRACT

It is proved that the set $A \cup B$ is a primitive Radon partition in the cyclic polytope C(n,d) if and only if the d + 2 points of A and B alternate along the moment curve.

The reader is referred to [3] and [1] for a discussion of primitive partitions. We begin with a few preliminary remarks concerning cyclic polytopes.

Let M_d denote the moment curve in \mathbb{R}^d defined by $\{x(t) = (t, t^2, \dots, t^d): t \text{ real}\}$. Let $t_1 < t_2 < \dots < t_n$ be any *n* distinct values of the parameter $t, n \ge d+1$, and let $V \equiv \{x(t_i): i = 1, 2, \dots, n\}$. Then the polytope conv $V \equiv C(n, d)$ is said to be a cyclic *d*-polytope. It is known [2] that every cyclic polytope is $\lfloor d/2 \rfloor$ -neighborly with vertices in general position in \mathbb{R}^d , and that every two cyclic polytopes C(n, d)are combinatorially equivalent.

THEOREM. The set $A \cup B$ is a primitive Radon partition in the cyclic polytope C(n,d) if and only if the d+2 points of A and B alternate along the moment curve.

PROOF. Since C(n,d) has its vertices in general position in \mathbb{R}^d , each primitive partition $A \cup B$ for C(n,d) contains exactly d+2 points. Furthermore, since C(n,d) is $\lfloor d/2 \rfloor$ -neighborly, by $\lfloor 1, \text{ Th. } 4 \rfloor$, for $j \leq \lfloor d/2 \rfloor$, no *j*-member subset of V is half a primitive in V. Thus, one of A, B has cardinality $\lfloor d/2 \rfloor + 1$. If card $B = \lfloor d/2 \rfloor + 1$, then card $A = d - \lfloor d/2 \rfloor + 1$, and card A - card B is either 0 or 1.

Let S denote the (d + 2)-member subset of V containing A and B, where

Received November 5, 1972 and in revised version February 16, 1973

 $S = \{x(s_i): 1 \le i \le d+2\}$ is labeled so that $s_1 < s_2 < \cdots < s_{d+2}$. Then S is in general position in \mathbb{R}^d , and the primitive partition $A \cup B$ for S is unique.

Examine the cyclic polytope conv S. By [1, Th. 4, Corollary 1], no superset of A (or of B) is a facet of conv S, so each facet of conv S omits a member of A and a member of B. Moreover, since each facet is determined by a d-member subset of S, and card S = d + 2, each facet of conv S omits exactly one member $x(a_0)$ in A and exactly one $x(b_0)$ in B. By Gale's evenness condition [2, Th. 4.7.2], this is true if and only if a_0 and b_0 are separated in our ordering by an even number of the remaining s_i points.

Also, every pair $\{a, b\}$, $x(a) \in A$, $x(b) \in B$, determines a facet of conv S, since no subset of $S \sim \{x(a), x(b)\}$ is half a primitive for S. Therefore, for every a and b, a and b are separated in our ordering by an even number of the remaining s_i points. Without loss of generality, assume $x(s_1) \in A$. Then

$$A = \{x(s_i): i \text{ odd}, 1 \le i \le d+2\},\$$

$$B = \{x(s_i): i \text{ even}, 1 \le i \le d+2\},\$$

and the points of A and B alternate on S.

Conversely, let A and B be disjoint subsets of V, card A + card B = d + 2, and assume that the points of A and B alternate on the subset S of M_d containing them. There is a unique partition for S, and by applying the above argument, this partition must be $A \cup B$. Thus the Radon partitions for C(n, d) are uniquely determined by M_d , completing the proof.

References

1. Marilyn Breen, Determining a polytope by Radon partitions, Pacific J. Math., 43 (1972), 27-37.

2. Branko Grünbaum, Convex Polytopes, New York, 1967.

3. William R. Hare and John W. Kenelly, *Characterizations of Radon partitions*, Pacific J. Math. 36 (1971), 159-164.

UNIVERSITY OF OKLAHOMA NORMAN, OKLAHOMA, U. S. A. 73609